Effects of a commonly occurring genetic polymorphism of human CYP3A4 (I118V) on the metabolism of anandamide.
نویسندگان
چکیده
The endocannabinoid system plays an important role in numerous physiological processes including mood, appetite, and pain sensation. A critical compound in maintaining cannabinoid tone is the endocannabinoid anandamide (AEA). We have recently shown that AEA is metabolized by several different human cytochromes P450 (P450) to form a number of metabolites, one of which exhibits increased biological activity. CYP3A4, one of the major P450s involved in the metabolism of AEA, produces four major metabolites. One of these metabolites, 5,6-epoxyeicosatrienoic acid ethanolamide (5,6-EET-EA), exhibits a much higher affinity than AEA for the cannabinoid 2 receptor (CB-2), which leads to a marked decrease in intracellular cAMP levels in cells expressing CB-2. There are multiple human alleles of CYP3A4, and the CYP3A4.4 allele has been shown to exhibit a significant decrease in activity. Recombinant CYP3A4*4 was expressed in Escherichia coli and was demonstrated to produce 60% less 6-hydroxytestosterone than the wild-type (WT) 3A4 in a reconstituted system. The metabolism of AEA by the WT and the CYP3A4.4 variant was investigated. The mutant produced 60% less of the four EET-EA metabolites than the WT. The mutant also produced a new peak on liquid chromatography-mass spectrometry not seen with the WT, which corresponded to 19-hydroxyeicosatetraenoic acid-ethanolamide. In addition, the mutant produces four novel peaks at m/z 380, which correspond to the addition of two oxygen atoms, possibly to form a peroxide bond. These data indicate that individuals expressing the CYP3A4.4 allele may exhibit significant variations in the metabolism of AEA as well as any other compounds resembling AEA.
منابع مشابه
Effects Of a Commonly Occurring Genetic Polymorphism of Human CYP3A4 (Ile118Val) On the Metabolism of Anandamide
متن کامل
Effect of Honey on CYP3A4 Enzyme and P-Glycoprotein Activity in Healthy Human Volunteers
The activity of cytochrome p450 isozyme 3A4 (CYP3A4) enzyme and P-glycoprotein (P-gp) is modulated by grapefruit juice and herbal drugs. CYP3A4 is the major phase I drug metabolizing enzyme and P-gp is an ATP-dependent drug efflux pump that regulates the intestinal absorption of orally administered drugs. Honey is commonly consumed as a dietary supplement. However, its influence on human CY...
متن کاملPharmacogenomics of glibenclamide in patients with type 2 diabetes mellitus: A systematic review
Introduction: One of the most widely used anti-diabetic drugs is sulfonylureas, which is often used as one of the first-line drugs in the treatment of type 2 diabetes. Due to the effect of the patient's genetic structure on the drug response (personalized medicine), the identification of genetic variations not only reduces the rate of adverse drug reactions but can also predict the effectivenes...
متن کاملExpression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملLaminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells
Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 38 11 شماره
صفحات -
تاریخ انتشار 2010